skip to main content


Search for: All records

Creators/Authors contains: "Rieker, Gregory B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report high-speed measurements of chemical kinetics reactions inside a shock tube using a 1-GHz repetition rate mid-infrared dual-comb spectrometer. We show formation of formaldehyde and sub-sequent decomposition to carbon-monoxide with 17.5 μs time resolution.

     
    more » « less
  2. This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity (Io) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently fromIo. However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimatedIoand simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimatedIo, which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene–air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was≈<#comment/>1.5to 10 times smaller than that provided using traditional methods.

     
    more » « less
  3. During propagation through atmospheric turbulence, variations in the refractive index of air cause fluctuations in the time-of-flight of laser light. These timing jitter fluctuations are a major noise source for precision laser ranging, optical time transfer, and long-baseline interferometry. While there exist models that estimate the turbulence-induced timing jitter power spectra using parameters obtainable from conventional micrometeorological instruments, a direct and independent comparison of these models to measured timing jitter data has not been done. Here we perform this comparison, measuring turbulence-induced optical pulse timing jitter over a horizontal, near-ground path using frequency comb lasers while independently characterizing the turbulence along the path using a suite of micrometeorological sensors. We compare the power spectra of measured optical pulse timing jitter to predictions based on the measured micrometeorological data and standard turbulence theory. To further quantitatively compare the frequency comb data to the micrometeorological measurements, we extract and compare the refractive index structure parameter,Cn2, from both systems and find agreement to within a factor of 5 for wind speed >1 m/s, and further improvement is possible as wind speed increases. These results validate the use of conventional micrometeorological instruments in predicting optical timing jitter statistics over co-located laser beam paths.

     
    more » « less
  4. There are two established methods for measuring rotational Doppler shift: (1) heterodyne and (2) fringe. We identify a key distinction, that only the heterodyne method is sensitive to the rotating object’s phase, which results in significant differences in the signal-to-noise ratio (SNR) when measuring multiple rotating particles. When used to measure randomly distributed rotating particles, the fringe method produces its strongest SNR when a single particle is present and its SNR tends to zero as the number of particles increases, whereas the heterodyne method’s SNR increases proportionally to the number of particles in the beam.

     
    more » « less